Monday, February 4

Parabola Math Problems


A parabola  is the set of all the points whose distance from a fixed point in the plane are equal  to their distances  from a fixed line in the plane.  The fixed point is called the focus and the fixed line is the directrix.

.directrix
Formula  for parabola ;-
(1) y2 = 4px  has symmetry around  x axis Directrix x + p = 0  Latus rectum  LL' is 4p vertex = (0,0)
(2) y2 = -4px has symmetry around the negative side of x-axis Directrix  x - p = 0 . LL' = 4p. Vertex =(0,0)
(3) x2 = 4 py has symmetry around the  positive y - axis Directrix y + p = 0.  LL' = 4p. Vertex =(0,0)
(4) x2 = -4py has symmetry around the negative y - axis. Directrix y - p = 0.  LL' = 4p. Vertex= (0,0)

Problems on Parabola:
Here is a parabola math problem for us  to do.
# Find the focus , vertex, axes, directrix  of the parabola y2 - 4x - 4y = 0
Sol:-
parabola
Step 1 : Let us bring the above given parabola equation to the parabola formula equation.
y2- 4x - 4y = 0
Step 2 : Add 4x to both sides + 4x             + 4x
We get                 y2 - 4y       =    4x
Step 3 :Complete the square on LHS we write y2 - 4y +4  = 4x + 4 ( we add 4 to both sides of the equation to balance it)
Step 4 : Now we get                                      (y  - 2 )2    = 4(x+1)
Step 5 : Let us compare the above equation to the general equation Y2 = 4 pX
we get Y = y-2  and X = x+1. Hence Y2 = (y -2)2  and 4px = 4(x+1) . Hence we get p = 1
Step 6 : Now let us set a table for both the values. Now x = X - 1 and  y = Y + 2
____________________________________________________________________________
Referred to X and Y axes                             Referred to x and y axes
____________________________________________________________________________
focus S = (p,0)                                          x = X - 1 = 1 -1 = 0; y = Y +2= 0 + 2 = 2
So focus is (0,2)
____________________________________________________________________________
vertex is (0,0)                                            x = X - 1 => 0 - 1 = -1 and y = Y + 2 = 0+2 =2
So vertex = (-1,2)
____________________________________________________________________________
axes Axis  of parabola Y =0                       Axis of the parabola is y = Y+2 = 0+2 =2
so axis  is y - 2 = 0
____________________________________________________________________________
equation of the directrix is                          equation of the directrix is  x + 1 = -1
x = -p that means X = - 1                           which gives us  x + 2 = 0
____________________________________________________________________________
Hence for the given parabola  y2 -4x - 4y = 0 we have (1)  Focus  as (0,2)  ;
(2)  Vertex is (-1,2)
(3)  Axis of the parabola is y = 2
and     (4) directrix is x + 2 = 0

Condition for a Line to be a Tangent for a Parabola:-
Let us find the condition for a line  lx + my + n = 0 to be a tangent to the parabola y2 = 4ax
Solution:-
The condition that a  line y = mx + c  to be a tangent to the parabola y2 = 4ax is that C = a/m...(1)
Step 1 : Let us write lx + my + n = 0 in the form y = mx + c
That gives us my = -lx - n
y =  [ -l]x + [ -n]
m        m
Step 2 : Now we have  y = mx + c   => y = (-l/m) x  + ( -n/m)  That is slope = -l/m and  y intercept C = -n/m
Hence  C =  -n/m  and m(slope) = (-l/m)
Step 3   But  C =  a / m (formula)
So we write  -n  =    a =   - am
m    (-l/m)       l
Step 4   Hence we get - n =  -am
m      l
Step 5 : Cross multiplying we get  -nl = -am2
Step 6 : That gives us nl = am2
Hence the condition that lx + my + n= 0 to be a tangent to the parabola y2  = 4ax is  nl = am2

No comments:

Post a Comment