Friday, March 1

Inverse Trigonometry Definition


The three trigonometry functions are arcsin(x), arccos(x), arctan(x). The inverse trigonometry function is the inverse functions of the trigonometry, written as cos^-1 x , cot^-1 x , csc^-1 x , sec^-1 x , sin^-1 x , and tan^-1 x .

Sine:

H (x) = sin(x)   where   x is in [-pi/2 , pi/2]

Cosine:

G (x) = cos(x) where   x is in [0 , pi ]

Tangent:

F (x) = tan(x)   where   x is in (-pi/2 , pi/2 )

Understanding Inverse Trig Function is always challenging for me but thanks to all math help websites to help me out.

Cosecant Definition

Csc theta = (hypotenuse)/(opposite)

Secant Definition

Sec theta = (hypotenuse)/(adjacent)

Cotangent Definition

Cot theta = (adjacent)/(opposite)

Examples of Inverse trigonometry functions:

Example 1:

Find the angle of x in the below diagram. Give the answer in four decimal points.

Solution:

sin x =2.3/8.15

x = sin -1(2.3/8.15 )

= 16.3921˚

Example 2:

Solve sin(cos-1 x )

Solution:
Let z = sin ( cos-1 x ) and y = cos-1 x so that z = sin  y. y = cos-1 x may also be marked as


cos y = x with pi / 2 <= y <=- pi / 2

Also

sin2y + cos2y = 1

Substitute cos y by x and solve for cos y to obtain

sin y = + or - sqrt (1 - x^2)

But pi / 2  <= y <= - pi / 2 so that cos y is positive

z = sin y = sin(cos-1 x) = sqrt (1 - x^2)

Example 3:

Evaluate the following sin-1( cos ((7 pi) / 4 ))

Solution:
sin-1( cos ( y ) ) = y only for  pi / 2 <=  y <= -pi / 2 . So we initial transform the given expression noting that cos ((7pi) / 4 ) = cos (-pi / 4 ) as follows

sin-1( cos ((7 pi) / 4 )) = sin-1( cos ( pi / 4 ))  - pi / 4  was selected since it satisfies the condition  pi / 2 <=  y <= - pi / 2 . Hence

sin-1( cos ((7 pi) / 4 )) =pi/4

Example 4:

With the given value find inverse of tan.

Solution:

Since tangent, again, is the trig function associated with opposite and adjacent sides, we apply the inverse of tangent to calculate the measure of this angle.

Tan 16 = (opposite)/(adjacent)

Tan 16 = ((bar(AC))/(bar(CB)))

Tan-1(7/24 ) = 16 o

No comments:

Post a Comment