Monday, February 18

Learn Common Ratio


In mathematics, a geometric series is a series with a permanent ratio between successive terms. For example, the series 1/2+1/4+1/8+1/16.....is geometric, so each term except the first can be obtained by multiplying the previous term by 1/2.Geometric series are one of the easiest examples of infinite series with finite sums. Basically, geometric series played an important role in the early development of calculus, and they continue to be central in the study of convergence of series. Geometric series(GS) are used throughout mathematics, and they have important applications in physics, engineering, biology, economics, computer science, queueing theory, and finance.

Common ratio:

The terms of a geometric series form a geometric progression(GP), meaning that the ratio of successive terms in the series is constant. Below table shows several geometric series with different common ratios:

Common ratio


Example

10


4 + 40 + 400 + 4000 + 40,000 + ···

1/3


9 + 3 + 1 + 1/3 + 1/9 + ···

1/10


7 + 0.7 + 0.07 + 0.007 + 0.0007 + ···

1


3 + 3 + 3 + 3 + 3 + ···

−1/2


1 − 1/2 + 1/4 − 1/8 + 1/16 − 1/32 + ···

–1


3 − 3 + 3 − 3 + 3 − ···

The behavior of the terms depends on the common ratio r:

If r is between -1 and +1 the terms of the series become smaller and smaller, approaching zero in the limit. The series converges to a sum, as in the case, where r is a half, and the series has the sum one.

If r is greater than 1 or less than -1 the terms of the series become larger and larger. The total sum of the terms also gets larger and larger, and the series has no sum. (The series diverges.)

If r is equal to 1, all of the terms of the series are the same. The series diverges.
If r is minus one the terms take two values alternately (e.g. 2, −2, 2, −2, 2,... ). The sum of the terms oscillates between two values (e.g. 2, 0, 2, 0, 2,... ). This is a different types of divergence and again the series has no sum.

Examples:

Consider the sum of the following geometric series:

s = 1+2/3+4/9+8/27+......

This series has common ratio 2/3. If we multiply through by this common ratio, then the initial one becomes a 2/3, the 2/3 becomes a 4/9, and so on:

2/3 s = 2/3 + 4/9 + 8/27 + 16/81 + .....



Friday, February 15

Mean Value Theorem


The Mean Value Theorem has very important consequences in differential calculus.

THEOREM: Let the function f such that

i.           continuous in the closed interval [a,b]
ii.            derivable in open interval (a,b)

Then there exists at least one c with  a < c < b such that

calculus formula

The result in the theorem can be expressed as a statement about graph of f: if A(a , f(a)) and B(b , f(b)), are the end points on the graph, then there is at least one point C between A and B,such that the tangent is drawn from C is parallel to the chord AB.

Mean value theorem graph

Mean value theorem is also known as Lagrange’s Mean Value Theorem or First Mean Value Theorem or Law of Mean.

Applications of mean value theorem

1. Let the function be f such that

(i)                  Continuous in interval [a,b]

(ii)                Derivable in interval (a,b)

(iii)              f'(x) = 0 `AA` x  `epsi` (a,b) , then f(x) is constant in [a , b].

2.Let f and g be a functions such that

(i)             f and g are continuous in interval [a,b]

(ii)            f and g are derivable in interval(a,b)

(iii)          f'(x) = g'(x) `AA` x  `epsi`  (a,b) , then f(x) - g(x) is constant in [a,b]

3.Let the function be f such that

(i)             Continuous in interval[a,b]

(ii)            Derivable in interval(a,b)

(iii)          f'(x) > 0 `AA` x  `epsi`  (a,b), then f(x) is strictly increasing function in [a,b]

4.Let the function be f such that

(i)             Continuous in interval[a,b]

(ii)            Derivable in interval (a,b)

(iii)          f'(x) < 0 `AA` x  `epsi`    (a,b), thenf(x)  is strictly decreasing function in[a,b]

Special case of Mean Value Theorem is when f(a) = f(b).Then there exists at least one c with  a < c < b such that f'(c)= 0 . This case is known as Rolle’s Theorem.

Cauchy’s mean value theorem in calculus

Let f and g be functions such that

i.            both are continuous in closed interval [a,b]
ii.            both are derivable in open interval (a,b)
iii.             g'(x) `!=` 0 for any x `epsi` (a,b)  then there exists at least one number c `epsi` (a,b) such that

`(f'(c))/(g'(c))`  =  `(f(b) - f(a))/(g(b) - g(a))`

Mean value theorem example



Verify Rolle's theorem for the function

f (x) = x2 - 8x + 12 on (2, 6)

Since a polynomial function is continuous and differentiable everywhere f (x) is differentiable and continuous (i) and (ii) conditions of Rolle's theorem is satisfied.

f (2) = 22 - 8 (2) + 12 = 0

f (6) = 36 - 48 + 12 = 0

Therefore (iii) condition is satisfied.

Rolle's theorem is applicable for the given function f (x).

\ There must exist c  (2, 6) such that f '(c) = 0

f '(x) = 2x - 8

`=>`  c = 4 `in`(2,6)

Rolle's theorem is verified.

How to Find Inverse Variation


The inverse variation is the product of two variables equals to a constant and the product is not equal to zero. Inverse variation is in the form of y =k/x. xy = k. Inverse variation in which value of one variable increases while the value of the other  variable decreases in value is known as an inverse variation. For example think a trip of 240 miles. Rate(mph)=>20,30,40,60,80,120 and time(h)=>12,8,6,4,3,2.The numbers can be explained. As the rate of speed increase, the numbers of hour require decrease. As the rate of speed decrease, the number of hour requires increase. contrasting in a direct variation, the ratio in each data is not equivalent. The product of the value in each is equal.

Problem on how to find inverse variation:-

Problem 1:-

If y is inversely proportional to find inverse variation x and y = 10 when x = 2. Find the value of y, when x = 15?

Let, k = x/y

Plug x = 2 and y = 10 in the above equation

k = 10/2

k = 5

Now the equation becomes 3 = x/y

Now, plug x = 15

3 = y/15

3 * 15 = y

So, y = 45 when x = 15

Problem 2:-

find inverse variation F vary inversely with the square of m. if F=15 when m=3,find F when m=5?

Solution:-

F=K/m2

15=K/32

15=K/9

K=135

F=135/m2

F=135/52

=135/25

=5.4..

Problem in Equation on how to find inverse variation:-

Find inverse variation problem:-

Complete the table in support of the positive values of x so that yoo (1)/(x^2)

Table

Find the x value using inverse variation method

Solution:-

If yoo (1)/(x^2)then y =(k)/(x^2)

But y =100 when x = 3

Therefore 100 =(k)/(9)

That is k = 900 so y =(900)/(x^2)

When x = 5, y =(900)/(25) = 36

If x = 10, y =(900)/(100) = 9

And if x = 15, y = (900)/(25) = 4

If y = 25, 25 =(900)/(x^2)

That is 25x2 =900

x2 =(900)/(25) = 36

Table

So that answer x = 6.

Thursday, February 14

Algebra Probability Problems


Probability is used to find the possible outcomes in an event. It is defined as the ratio between the numbers of favorable outcomes to the total number of outcomes. The value of probability lies only between 0 and 1. It is not greater than 1.There are several types of probability. They are Conditional probability and Theoretical probability. Conditional probability occurs when an other event is already occurred and changed the sample space. Theoretical probability occurs based on the probability principles.

PROBABILITY BASIC PROBLEMS

Problem 1:

A number is drawn from 1 to 12 at random. What is the probability of finding a number 7.

Solution:

From 1 to 12 there will be 12 numbers. So the total outcome is 12. Number 7 occurs only once. So the favorable outcome is 1.

Hence the answer is 1/12

Problem 2:

A bag contains 7 black, 8 blue and 11 green marbles. A marble is drawn at random. What is P (blue)?

Solution:

Total marbles in the bag = 7+8+11 = 26

Out of which number of blue marbles = 8

So the probability P (blue) = 8/26 = 4/13

Problem 3:

A card is drawn from a well shuffled pack of cards. What is P (diamond)?

Solution:

A pack of cards will have a total of 52 cards.

So total outcomes = 52.

In a pack of cards number of diamonds = 13

So the probability P (Diamond) = 13/52 =1/4

PROBABILITY PRACTICE PROBLEMS

Problem 1:

A die is thrown twice. Find the probability that a sum of 6 occurs on the die.

Solution:

Let F be the event of getting a number 6 on the die.

F = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

So the probability = (5/36)

Problem 2:

The condition is two numbers appearing on throwing two dice are different. Find

the probability of the when a sum of 4 occurs on the die.

Solution:

Let E be the event of getting a sum of 4. Here the condition given is the numbers on each dice is different.

E= {(1, 3), (3, 1)}

So the probability= 2/36 = 1/18

Wednesday, February 13

How to Bisect a Reflex Angle


Before we are going to see how to bisect a reflex angle we start with what is angle.  Angle is made with the turn that takes place between two straight lines which are formed from the same end point where the end point is also known as vertex. Reflex angle is the angle formed between the angles of 180 degree to 360 degree.

How to bisect a reflex angle, the word bisects means nothing but cutting it into two or splitting into two. Reflex angle bisector is the bisector that bisects the reflex angle. A bisector angle is a line that passes through the vertex of the reflex angle. How to bisect a reflex angle is followed by some certain steps.

Steps about how to bisect a reflex angle:

To bisect a reflex angle:

First draw a line and mark the given points  assume A,B.
By using the protector mark the reflection angle and draw the reflection angle and let the point be C.
Now AB and AC are the two lines with a same midpoint A.
Now by using campus make an arc with any radius which cuts both lines AB and AC.
Let the intersection point on line AB will be as D and on line AC be as E.
Take more than an half of the line as radius and in the campus and by keeping D and as midpoint make an arc. Similarly Keep E as midpoint and make an arc so that it cut the arc and the meeting point be F.
Now draw a line which joins AF.
Now AF will be the bisector of the given reflex angle.

These are the steps to be followed to bisect a reflex angle. The angle that is formed due to bisector in the reflex angle will be always an obtuse angle.

Example of how to bisect a reflex angle:

Draw a bisector of the reflex angle of 280 degree.

Solution:

Draw the line AB.

line

Keeping A as centre the angle of point 280 is marked and the line is drawn which makes a reflex angle of 280 degree which makes a line AC.

Here DE is an arc made by a as centre.

280 reflex angle bisect

More than half is taken as radius and two arcs are made with D and E as centre.The point F is plotted and a line is joined from A to F. The angle AF is the bisector of the reflection angle 280 degree.

Bisect a 280 reflex angle

Monday, February 11

Percentage off Calculator


"Percentage off" - This is the term that is synonymous with "percentage discount". It is the discount on some purchase represented in the form of percentage. For example, "10 percent off on a particular purchase" implies that on every $ 100, $ 10 will be discounted. Thus if the purchase is of `$`  200, the discount will be $ 20, if the purchase is $ 250, the discount will be $ 10 + $ 10 + $ 5 = $ 25, and so on. The formula to calculate the actual value of discount when we know the discount percentage and the purchase value is:

Discount value = (discount percent * purchase value)/100

In words, the percentage off on a particular item is equal to the product of percentage discount and the cost price divided by hundred.

The final payable amount in a purchase is found by deducting all the given discounts from the cost price of articles purchased.

Solved examples on percentage off calculator

For example, David purchases a shirt worth $ 100, on which the percentage off is 5%, stationary worth $120, on which the percentage off is 12%, and a football worth $45 on which he percentage off is 7%. Find the final amount paid by David on his purchases.

Sol:- Percentage off calculator :

We have to calculate the discount in $ for each article and then subtract it from that article's cost price. Once all the discounted prices are calculated, they are all added to get the total payable amount by David.

Cost price of shirt = $ 100

Percentage off = 5%

Discount (in $) = 5% of 100

= 5/100 x 100

= $ 5

Discounted price = $ 100 – 5

= $ 95

Cost price of stationary = $ 120

Percentage off = 12%

Discount (in $) = 12% of 120

= 12/100 x 120

= $ 14.4

Discounted price = $ 120 – 14.4

= $ 105.6

Cost price of football = $ 45

Percentage off = 7%

Discount (in $) = 7% of 45

= 7/100 x 45

= $ 3.15

Discounted price = $ 45 – 3.15

= $ 41.85

Total payable amount = $ 41.85 + 105.6 + 95

= $ 242.45

Therefore, David has to pay $ 242.45 as the final price after deducting all given discounts.

Thursday, February 7

Solve Solutions in Math


With the help of Maths we can find the easy solutions to difficult problems. It is a concept of numerically solving with logical understanding. Basic operations in mathematics are addition, subtraction, multiplication, division.Also we solve some problems with the help of identities and formulas. In this article we shall study some more solutions in math. Before solving the maths problems there are some important points to remember. some of them are following.

Read the problem very carefully and find what we have to find ?

If there is any formula start to the solve the problem from there.

If it possible break the problem into 2 or more parts.

Make the an easy equation if possible.

Solve the equation to get the answer.

Some Important Formulas Used to get Solutions in Math

( a + b )2 = a2 + b2 + 2ab

( a - b )2 = a2 + b2 - 2ab

( a + b ) ( a - b ) = a2 - b2

a3 + b3 + c3 = 3abc

Area of perpendicular triangle = 1/2 X base X height

Area of circle = 2pi r

Surface area of cuboid = 2(lb +bh + hl)

volume of cuboid = lbh

mean     =     ("Sum of all Numbers")/(" Total Numbers" )

Examples for Solutions in Math

Ex 1 : Evaluate : 302 + 203 - 503

Sol :Step 1: Let a = 30, b = 20, c = - 50. Then,

a + b + c = 30 + 20 - 50 = 0

Step 2:We know   a3 + b3 + c3 = 3abc

303 + 203 + ( -50 )3 = 3 X 30 X 20 X -50

303 + 203 - 503 =  - 90000  Ans.

Ex 2 : Factorize a4 - b4

Sol :    Step 1: a4 - b4

=  ( a2)2 - ( b2 )2

Step 2:We know ( a + b ) ( a - b ) = a2 - b2

so          =  ( a2)2 - ( b2 )2

= ( a2 + b2 ) ( a2 -  b2)

=  ( a2 + b2 )  (a + b) ( a - b )  Ans.

Ex :3 The radius of a circle is 14 cm . Find the area of the circle.

Sol :         area of circle

Step 1:Radius of circle = 14cm

Step 2:Area of circle = pi r2

=  22/7 14 X 14

=  616 cm2 Ans.
Practice Problems to Find Solutions in Math:

Pro 1: Evaluate :    233 - 173

Ans :   7254

Pro 2: The radius of circle is 35cm. Find the area of circle?

Ans :  3850 cm2