Triangle Theorem:
The angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle.
Proof : Given an arc PQ of a circle subtending angles POQ at the center O and PAQ at a point A on the remaining part of the circle. We need to prove that ∠ POQ = 2 ∠ PAQ.
Consider the three different cases as given in Fig. (i), arc PQ is minor; in (ii),arc PQ is a semicircle and in (iii), arc PQ is major. Let us begin by joining AO and extending it to a point B.
In all the cases, ∠ BOQ = ∠ OAQ + ∠ AQO because an exterior angle of a triangle is equal to the sum of the two interior opposite angles.
Also in Δ OAQ, OA = OQ (Radii of a circle) Therefore, ∠ OAQ = ∠ OQA (Theorem 7.5)
This gives ∠ BOQ = 2 ∠ OAQ (1) Similarly, ∠ BOP = 2 ∠ OAP.... (2) From (1) and (2), ∠ BOP + ∠ BOQ = 2(∠ OAP + ∠ OAQ) This is the same as ∠ POQ = 2 ∠ PAQ ...(3) For the case (iii), where PQ is the major arc, (3) is replaced by reflex angle POQ = 2 ∠ PAQ
For more math related problem help you can refer below links:
other links and math website
The angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle.
Proof : Given an arc PQ of a circle subtending angles POQ at the center O and PAQ at a point A on the remaining part of the circle. We need to prove that ∠ POQ = 2 ∠ PAQ.
In all the cases, ∠ BOQ = ∠ OAQ + ∠ AQO because an exterior angle of a triangle is equal to the sum of the two interior opposite angles.
Also in Δ OAQ, OA = OQ (Radii of a circle) Therefore, ∠ OAQ = ∠ OQA (Theorem 7.5)
This gives ∠ BOQ = 2 ∠ OAQ (1) Similarly, ∠ BOP = 2 ∠ OAP.... (2) From (1) and (2), ∠ BOP + ∠ BOQ = 2(∠ OAP + ∠ OAQ) This is the same as ∠ POQ = 2 ∠ PAQ ...(3) For the case (iii), where PQ is the major arc, (3) is replaced by reflex angle POQ = 2 ∠ PAQ
For more math related problem help you can refer below links:
other links and math website