Friday, May 17

Coplanar Geometry


Three or more points, lines or any other geometric shapes that lie on the common plane are knows as Coplanar.

Geometric substance lying in a same plane are said to be coplanar. In a plane three noncollinear points are some extent coplanar. Four points are coplanar, defined by them is 0, lying in the same plane. Example, any set of three points in plane are coplanar. Let us see coplanar geometry in brief.

Conditions for coplanar:

Coplanarity is corresponding to the statement that the pair of lines determined by the four points is not skew, and can be equivalently stated in vector form as

`|[x1,y1,z1,1],[x2,y2,z3,1],[x3,y3,z3,1],[x4,y4,z4,1]| = 0`

(x3 - x1).[(x2 - x1) × (x4 - x3)] = 0

The coplanar not only for four points it is also for two or three points.

An arbitrary number of n  points x1 , ..., xn can be checked for coplanarity by finding the point-plane distances of the points x4, ...,xn from the plane determined by (x1,x2,x3), and checking if they are all zero. Therefore, the points are all coplanar.

A set of n vectors v is coplanar if the nullity of the linear mapping defined by v  has dimension 1, the matrix rank of v (or equivalently, the number of its singular values) is n-1.

Parallel lines in three-dimensional space are said to be coplanar, but skew lines are not.

In this article we see the coplanar of lines on same plane. Using the line equation we find the coplanar for the three lines on a same plane.

Example problem for coplanar:

Example: prove that three lines are coplanar, equation lines are 3x + 2y = 0, 3x + 3y = 3, 2x + 2y = 2

Solution:

Given: 3x + 2y = 0 -------------(1)

3x + 3y = 3 -------------(2)

2x + 2y = 2 --------------(3)

`|[x1,y1,c],[x2,y2,c],[x3,y3,c]| = 0`

`|[3,2,0],[3,3,3],[2,2,2]| = 0`

3[(3×2) - (3×2)] - 2[(3×2) - (3×2)] +0[(3×2) - (3×2)] = 0

3(6 - 6) -2(6 - 6) -0(6 - 6) =0

0 = 0

Hence proved thus the three lines are coplanar.

Thursday, May 16

To Logarithmic Table


Logarithmic Properties plays an important role in complex calculations in math. We can perform big calculations in math,physics , engineering using logarithms. It give accurate answer as the calculator. These calculations are carried out with the help of logarithmic table.We will see the logarithmic table. The ways of reading the logarithmic table and how to use it in calculations.

Any number x in standard form is written as x = m x 10p where 1 `<=` m<10 p="">Taking log on both sides we get
log10x = log10(m x 10p) = log10m + plog1010
             = log10m + p
Here p is the characteristic of log x and log10m is called the mantissa of logx

How to find the logarithm of a number:

  • Step 1: Write the number in the standard form.
For example 431.5 = 4.315 x 102
  • Step 2: Find the characteristic p of the logarithm.
Here p = 2
  • Step 3: Find the mantissa from the table.
To find the log of 4.315 from the table. log 4.31 is 0.634473 `~~` 0.6350. We take the approximate value.
log 4.315 = p + logm = 2+0.6350 = 2.6350

Logarithmic table from 1 to 4.99


1.0000.000000002.000.30103003.000.47712134.000.6020600
1.0010.000434082.010.30319613.010.47856654.010.6031444
1.0020.000867722.020.30535143.020.48000694.020.6042261
1.0030.001300932.030.30749603.030.48144264.030.6053050
1.0040.001733712.040.30963023.040.48287364.040.6063814
1.0050.002166062.050.31175393.050.48429984.050.6074550
1.0060.002597982.060.31386723.060.48572144.060.6085260
1.0070.003029472.070.31597033.070.48713844.070.6095944
1.0080.003460532.080.31806333.080.48855074.080.6106602
1.0090.003891172.090.32014633.090.48995854.090.6117233
1.0100.004321371.100.04139272.100.32221933.100.49136174.100.6127839
1.0110.004751161.110.04532302.110.32428253.110.49276044.110.6138418
1.0120.005180511.120.04921802.120.32633593.120.49415464.120.6148972
1.0130.005609451.130.05307842.130.32837963.130.49554434.130.6159501
1.0140.006037951.140.05690492.140.33041383.140.49692964.140.6170003
1.0150.006466041.150.06069782.150.33243853.150.49831064.150.6180481
1.0160.006893711.160.06445802.160.33445383.160.49968714.160.6190933
1.0170.007320951.170.06818592.170.33645973.170.50105934.170.6201361
1.0180.007747781.180.07188202.180.33845653.180.50242714.180.6211763
1.0190.008174181.190.07554702.190.34044413.190.50379074.190.6222140
1.0200.008600171.200.07918122.200.34242273.200.50515004.200.6232493
1.0210.009025741.210.08278542.210.34439233.210.50650504.210.6242821
1.0220.009450901.220.08635982.220.34635303.220.50785594.220.6253125
1.0230.009875631.230.08990512.230.34830493.230.50920254.230.6263404
1.0240.010299961.240.09342172.240.35024803.240.51054504.240.6273659
1.0250.010723871.250.09691002.250.35218253.250.51188344.250.6283889
1.0260.011147361.260.10037052.260.35410843.260.51321764.260.6294096
1.0270.011570441.270.10380372.270.35602593.270.51454784.270.6304279
1.0280.011993111.280.10721002.280.35793483.280.51587384.280.6314438
1.0290.012415371.290.11058972.290.35983553.290.51719594.290.6324573
1.0300.012837221.300.11394342.300.36172783.300.51851394.300.6334685
1.0310.013258671.310.11727132.310.36361203.310.51982804.310.6344773
1.0320.013679701.320.12057392.320.36548803.320.52113814.320.6354837
1.0330.014100321.330.12385162.330.36735593.330.52244424.330.6364879
1.0340.014520541.340.12710482.340.36921593.340.52374654.340.6374897
1.0350.014940351.350.13033382.350.37106793.350.52504484.350.6384893
1.0360.015359761.360.13353892.360.37291203.360.52633934.360.6394865
1.0370.015778761.370.13672062.370.37474833.370.52762994.370.6404814
1.0380.016197351.380.13987912.380.37657703.380.52891674.380.6414741
1.0390.016615551.390.14301482.390.37839793.390.53019974.390.6424645
1.0400.017033341.400.14612802.400.38021123.400.53147894.400.6434527
1.0410.017450731.410.14921912.410.38201703.410.53275444.410.6444386
1.0420.017867721.420.15228832.420.38381543.420.53402614.420.6454223
1.0430.018284311.430.15533602.430.38560633.430.53529414.430.6464037
1.0440.018700501.440.15836252.440.38738983.440.53655844.440.6473830
1.0450.019116291.450.16136802.450.38916613.450.53781914.450.6483600
1.0460.019531681.460.16435292.460.39093513.460.53907614.460.6493349
1.0470.019946681.470.16731732.470.39269703.470.54032954.470.6503075
1.0480.020361281.480.17026172.480.39445173.480.54157924.480.6512780
1.0490.020775491.490.17318632.490.39619933.490.54282544.490.6522463
1.0500.021189301.500.17609132.500.39794003.500.54406804.500.6532125
1.0510.021602721.510.17897692.510.39967373.510.54530714.510.6541765
1.0520.022015741.520.18184362.520.40140053.520.54654274.520.6551384
1.0530.022428371.530.18469142.530.40312053.530.54777474.530.6560982
1.0540.022840611.540.18752072.540.40483373.540.54900334.540.6570559
1.0550.023252461.550.19033172.550.40654023.550.55022844.550.6580114
1.0560.023663921.560.19312462.560.40824003.560.55145004.560.6589648
1.0570.024074991.570.19589972.570.40993313.570.55266824.570.6599162
1.0580.024485671.580.19865712.580.41161973.580.55388304.580.6608655
1.0590.024895961.590.20139712.590.41329983.590.55509444.590.6618127
1.0600.025305871.600.20412002.600.41497333.600.55630254.600.6627578
1.0610.025715381.610.20682592.610.41664053.610.55750724.610.6637009
1.0620.026124521.620.20951502.620.41830133.620.55870864.620.6646420
1.0630.026533261.630.21218762.630.41995573.630.55990664.630.6655810
1.0640.026941631.640.21484382.640.42160393.640.56110144.640.6665180
1.0650.027349611.650.21748392.650.42324593.650.56229294.650.6674530
1.0660.027757201.660.22010812.660.42488163.660.56348114.660.6683859
1.0670.028164421.670.22271652.670.42651133.670.56466614.670.6693169
1.0680.028571251.680.22530932.680.42813483.680.56584784.680.6702459
1.0690.028977711.690.22788672.690.



Algebra is widely used in day to day activities watch out for my forthcoming posts on Variance Statistics Formula and Definition of least Common Multiple. I am sure they will be helpful.