Wednesday, May 15

Equilateral Square


Equilateral square is a geometry figure, square has four sides all the four sides are equal in length then it is said to be equilateral square. In two dimensions square we find only the area. The area is measured in terms of square units. In three dimensions, square is called cube it is also equilateral for that we find the volume only the figure has length, width and height.

Formula for equilateral square:

Area Formulas for equilateral square

The area of a square can be found by multiply the base times itself

Area of square = side × side or a2

Volume of cube =side x side x side a3



AB = BC = CD = AD

Then it is Equilateral Square

Problem for area of square:

1) Find the area of the square, length of one side id 9cm

Solution:

Given: Side a = 9cm

Area of square = a2

= 9 × 9

Area of square = 81cm2

Problems for volume of square

2) Find the volume of the cube its side is 9cm

Solution:

Given: side =9cm

Volume of cube = a3

= a × a × a

= 9 × 9 × 9

= 729cm3

3) Find the area of the square, length of one side id 4m

Solution:

Given: Side a = 4m

Area of square = a2

= 4 × 4

Area of square = 16m2

Problems for volume of square

4) Find the volume of the cube its side is 12m

Solution:

Given: side = 12m

Volume of cube = a3

= a × a × a

= 12 × 12 × 12

= 1728 m3

Examples for equilateral square:

Prove by distance formula that the square is a equilateral square:



Formula  = √(x2 - x1)2+(y2 - y1)2

A(0,0) B(0,1) C(1,1) D(1,0)

Length of AB = √(x2 - x1)2+(y2 - y1)2

AB = √(0-0)2 + (1-0)2

= √0+(1)2

= 1

Length of BC = √(x2 - x1)2+(y2 - y1)2

BC = √(1-0)2 + (1-1)2

= √(1) + (0)

= 1

Length of CD = √(x2 - x1)2+(y2 - y1)2

CD = √(1-1)2 + (0-1)2

= √(0) +(-1)

= 1

Length of AD = √(x2 - x1)2+(y2 - y1)2

AD =√ (1-0)2 + (0-0)2

= √(1) + 0

= 1

Therefore AB = BC = CD = AD =1

All the sides are equal then the square is equilateral square.

Monday, May 13

Geometry Area Perimeter


In that geometry, the area and perimeter can be calculated for two dimensional and three dimensional shapes. The quantity of surface occupied by a plane figure is called its area. The unit of area is called as square units. The length of the boundary of any closed figure is called as perimeter. The unit of perimeter is meter units. In this article we shall see about the geometry formula for finding the area and the perimeter of simple closed figures like triangle and rectangle, square, and circle. The geometry area and perimeter example problems and practice problems are given below.

Formulas:

Area of square = a2 square units

Perimeter of square = 4 * a

Area of rectangle = length * Width

Perimeter of rectangle = 2( Length + Width)

Area of circle = `Pi` r2

Circumference of circle = 2`Pi` r

Example problems - Geometry area perimeter:

Example problem 1: Find out the area and perimeter of a geometry circle with 15 cm radius.

Solution:

Given:    Radius = 15 cm

Formula:       Area of Circle = radius2

= 3.14 * 152

= 3.14 * 225

On solving this, we get

= 706.5 cm2.

The Circumference of Circle is equal to the multiplication of 2, and ∏ and the radius of the circle

Formula:              Circumference of the Circle = 2 *Π* radius

= 2 * 3.14 * 15

On solving this, we get

= 94.2 cm.

Example problem 2:

Find the geometry surface area of cube for the side is 9 inches.

Solution:

Area of cube A = 6 (side) 2 = 6 * 92

A = 6 * 81

A = 486 square inches.

Example problem 3:

Find the curved surface area, for hemisphere whose radius is 5

Solution:

Curved surface area = 2 * ∏ * r2

= 2 * 3.14 * (5)2

= 2 * 3.14 * 25

= 157

Practice problems - Geometry area perimeter:

Practice problem 1:

Find the area of  circle, For radius is 8

Answer: 200.96

Practice problem 2:

Determine the area and perimeter of rectangle, for length and width are 7meter and 5 meter respectively.

Answer: Area of rectangle = 35 m2

Perimeter of rectangle = 24 m