Sunday, April 21

Solve Multiplying Trinomials


In Algebra trinomial is a polynomial having three terms .otherwise it consisting of three monomial. For an example.

8x + 5y + 3z having x, y z variable

4t + 6s2 + 3y3 Here t, s, y is a variable

5ts + 9t + 6s with t, s variables

Here we are going to study about how to solve multiply a trinomial and its example problems.
Solve example problems for multiplying trinomial

Example: 1

Multiplying trinomial with binomial

Solve (x2+2x+3) (3x+3)

Solution:

First we have to take 3x multiply with trinomials

3x3+6x2+9x

Next we take a 3

3x2+6x+9

Now combine the like terms

3x3+6x2+3x2+9x+6x+9

3x3+10x2+15x+9

This is the multiplying answer.

Example: 2

Multiplying trinomial with another trinomial

Solve (x2 +3x+3) (2x2 +6x+4)

Solution:

Here there are two trinomial is given

First we have to multiply the x2  term to the other trinomial we get

2x (2+2) +6x (2+1) + 4x2

= 2x4+6x3+4x2

Next we take the 3x term we get

3*2x(1+2)+ 3*6x2+12x

= 6x3+18x2+12x

Finally we take a constant term 3

= 6x2+18x+12

Now we combine all the terms we get

= 2x4+6x3+4x2 + 6x3+18x2+12x + 6x2+18x+12

Combine the like term x3

6x3+6x3 = 12 x3

Combine x2 term

= 4x2+18x2+6x2

= 28x2

Combine x term

12x+18x=30x

Therefore the final answer is

2x4+12x3+28x2+30x+12

Multiplying trinomial with same trinomial

Example: 3

Solve (x2+3x+2) (x2+3x+2)

Solution:

Now we have to expand the polynomial

Take x2 and multiply with all the terms we get

X4+3x3+2x2

Similarly take 3x and multiply with all the term we get

3x3+9x2+6x

Finally take constant 2 multiply with all the term we get

2x2+6x+4

Now we combine all the term

X4 +3x3 + 2x2 + 3x3 + 9x2 + 6x + 2x2 + 6x + 4

Combine the like terms we get

3x3+3x3= 6x3

Combine the x2 terms

2x2+2x2+9x2 = 13x2

Similarly combine the x term

6x+6x=12x

Finally constant 4

Combine all the terms

x4+6x3+13x2+12x+4

This is the multiplying answer for the given two trinomials.

Saturday, April 20

Math Game Absolute Value


In math, the absolute value is also known as the modulus |x| of a real number x is x's arithmetic value without consider to its sign. So, for example, 5 is the absolute value of both 5 and −5.

A simplification of the absolute value for real numbers occurs in an extensive selection of math settings.

Properties of the math game absolute value:

The absolute value has the following four fundamental properties:

`|x| = sqrt(x^2)`                                         (1) Basic

`|x| \ge 0 `                                                  (2)     Non-negativity

`|x| = 0 \iff x = 0`                                  (3)     Positive-definiteness

`|xy| = |x||y|\,`                                        (4)     Multiplicativeness

`|x+y| \le |x| + |y|`                                  (5)     Subadditivity

Other important properties of the absolute value include:

` |-x| = |x|\, `                                             (6)     Symmetry

`|x - y| = 0 \iff x = y `                            (7)     Identity of indiscernible (equivalent to positive-definiteness)

`|x - y| \le |x - z| +|z - y|`                        (8)     Triangle inequality (equivalent to sub additivity)

`|x/y| = |x| / |y| \mbox{ (if } y \ne 0) \,`                          (9)      Preservation of division (equivalent to multiplicativeness)

`|x-y| \ge ||x| - |y||`                                  (10)     (equivalent to sub additivity)

If y > 0, two other useful properties concerning inequalities are:

`|x| \le y \iff -y \le a \le y`

` |x| \ge y \iff x \le -y \mbox{ or } y \le x`

Math game absolute value – Games:

Math game absolute value – Game 1:

Arrange the order of ascending -|-15|, |12|,|7|,|-99|,|-5|,|-8|, |-65|, |6|

Solution:

First we remove the modulus symbol

-15, 12, 7, 99, 5, 8, 65, 6

Then to arrange the given order

-15, 5, 6, 7, 8, 12, 65, 99
Math game absolute value – Game 2:

Arrange the order of descending -|-16|, |13|,|8|,|-9|,|-6|,|-7|, |-66|, |63|, -|21|, |-68|

Solution:

First we remove the modulus symbol

-16, 13, 8, 9, 6, 7, 66, 63, -21, 68

Then to arrange the given order

68, 66, 63, 13, 9, 8, 7, 6, -16, -21

Math game absolute value – Game 3:

Absolute Value

Arrange the descending order

Solution:

First we remove the modulus symbol

-81, -28,67,-59,98,71,38

Then to arrange the given order

98, 71, 67, 38, -28, -59, -81