Monday, April 15

Finctions Substituting


Substitution is the procedure of replace a changeable in a term with its real worth. If you are given an equation like 6x + 7 = 6+7, told that x = 1, and ask to find the value of the function what do you do? The first step is to replace with 1 for each 'x' in the problem. We get the expression as, 6(1) + 7 = 13

Functions substituting Example problems:

Problem 1: Find the functions substituting given below.

f(x) = 2x + 1

Substitute x=1, 2,3,4,5

Solution for  Functions substituting:

Step 1

x=1 f(1) =(2*1)+1

The answer is

f(1) =3

Step 2

x=2 f(2) =(2*2)+1

The answer is

F (2) =5

Step 3

x=3 f (3) =(2*3)+1

The answer is

F (3) =7

Step 4

x=4 f(4) =(2*4)+1

The answer is

F (4) =9

Step 5

x=5 f(4) =(2*5)+1

The answer is

F (4) =11

The substituting functions is 1, 2,3,4,5

F (1) = 3

F (2) =5

F (3) =7

F (4) = 9

F (5) = 11

Problem 2: Find the functions substituting given below.

f(x) = 3x +2

Substitute x=1, 2,3,4,5

Solution for  Functions substituting:

Step 1

x=1 f(1) =(3*1)+2

The answer is

f(1) =5

Step 2

x=2 f(2) =(3*2)+2

The answer is

f(2) =8

Step 3

x=3 f(3) =(3*3)+2

The answer is

f(3) =11

Step 4

x=4 f(4) =(3*4)+1

The answer is

f(4) =13

Step 5

x=5 f(5) =(3*5)+1

The answer is

f (5) =16

The substituting functions is 1, 2,3,4,5

F (1) = 5

F (2) =8

F (3) =11

F (4) =13

F (5) =16

Functions substituting Example problems:

Problem 3: Find the functions substituting given below.

F(x) = 2x +2

Substitute x=1, 2,3,4,5

Solution for  Functions substituting:

Step 1

x=1 f (1) =2*1+2

The answer is

f(1) =4

Step 2

x=2 f(2) =(2*2)+2

The answer is

f(2) =6

Step 3

x=3 f(3) =(3*2)+2

The answer is

f(3) =8

Step 4

x=4 f(4) =(2*4)+2

The answer is

f(4) = 10

Step 5

x = 5 f(5) = (2*5)+2

The answer is

f(5) = 12

The substituting functions  is 1, 2,3,4,5

F (1) = 4

F (2) = 6

F (3) = 8

F (4) = 10

F (5) =12

Problem 4.Find the functions substituting given below.

F(x) = 4x +4

Substitute x = 1, 2,3,4,5

Solution for Functions substituting

Step 1:

x=1 f (1) = (4*1)+4

The answer is

f(1) = 8

Step 2

x=2 f(2) = (4*2)+4

The answer is

f(2) =12

Step 3

x=3 f(3) =(4*2)+4

The answer is

f(3) =12

Step 4

x=4 f(4) =(4*4)+4

The answer is

f(4) =20

Step 5

x=5 f(5) =(4*5)+4

The answer is

f(5) =24

The substituting functions is 1, 2,3,4,5

F (1) =8

F (2)=6

F (3) =12

F (4) =20

F (5) =24

Friday, March 15

Math Word Problems Rate


Definition

Solving the Time, Speed, and Distance Triangle

The following formulas have been used if the speed is measured in knots, the distance in nautical miles, and the time in hours and/or tenths of hours (0.1 hour = 6 minutes).

Distance = Speed x Time

Speed = Distance ÷ Time

Time = Distance ÷ Speed

Math word problems rate - Examples

Math word problems rate - Example 1

A person crosses a 600 m long street in 5 minutes. What is his speed in km per hour?

Explanation:

Speed=`(600/(5*60))` = 2 m/sec.

Converting m/sec to km/hr (see important formulas section)

=`2*18/5`

=7.2 km/hr.

Math word problems rate - Example 2

The ratio between the speeds of two trains is 7: 8. If the second train is runs at 400 kms in 4 hours, then the speed of the first train is:

Explanation:

Let the speed of two trains be 7x and 8x km/hr.

Than, 8x=`400/4`

8x=100

X=12.5

Speed of first train = (7 x 12.5) km/hr = 87.5 km/hr.

Math word problems rate - Example 3

An aero plane covers with a certain distance at a speed of 240 kmph in 5 hours. To cover the same distance in 1 hours it must travel at a speed of:

Explanation:

Distance =` (240 x 5)` = 1200 km.

Required speed=`(1200*3/5)` km/hr

=720km/hr

Math word problems rate - Example 4

A man completes a journey in 10 hours. He travels the first half of the journey of the rate of 21 km/hr and second half at the rate of 24 km/hr. Find the total journey in km.

Explanation:

`(1/2)` `(x/21)` +`(1/2)` `(x/24)` =10

`(x/21)` +`(x/24)` =20

15x = 168 x 20

X(`168*` `20/15` `)` =224km

Math word problems rate - Example 5

A farmer travelled a distance of 61 km in 9 hours. He travelled partly on foot at 4 km/hr and partly of bicycle at 9 km/hr. The distance travelled on foot is:

Explanation:

Let the distance travelled on foot be x km.

Then, distance travelled on bicycle = (61 -x) km.

So, `x/4` + `(61-x)/9` =9

9x + `4(61 -x)` = 9 x 36

5x = 80

x = 16 km.

Math word problems rate - Practice Problem

Example

A man on tour of the travels at first 160 km in 64 km/hr and the next 160 km in 80 km/hr the average speed for the first 320 km of the tour is:

Answer=71.11 km/hr