Thursday, March 14

Step by Step Differentiation


In calculus (a branch of mathematics) the derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; the process of finding a derivative is called differentiation. The reverse process is called antidifferentiation (Source: Wikipedia)

General formula for differentiation:

`(d / dx)` (xn) = nx(n - 1)

`(d / dx)` (uv) = u `((dv) / (dx))` + v `((du) / (dx))`

Example problems for step by step differentiation

Step by step differentiation example problem 1:

Differentiate the given function u = 4x3 + 3x2 + 245x. Find the second derivative value of the given function.

Solution:

Given function is u = 4x3 + 3x2 + 245x

Step 1:

Differentiate the given function u with respect to x, we get

`((du) / (dx))` = (4 * 3)x2 + (3 * 2)x + 245

= 12x2 + 6x + 245

Step 2:

Differentiate the above value `((du) / (dx))` with respect to x, we get the second derivative value

`((d^2u) / (dx^2))` = (12 * 2)x + 6

= 24x + 6

The second derivative value of the given function is 24x+ 6

Answer:

The final answer is 24x + 6

Step by step differentiation example problem 2:

Differentiate the given function v = 9x2 + 12x. Find the second derivative value of the given function.

Solution:

Given function is v = 9x2 + 12x

Step 1:

Differentiate the given function u with respect to x, we get

`((dv) / (dx))` = (9 * 2)x + 12 + 0

= 18x + 12

Step 2:

Differentiate the above value `((dv) / (dx))` with respect to x, we get the second derivative value

`((d^2v) / (dx^2))` = 18 + 0

= 18

The second derivative value of the given function is 18

Answer:

The final answer is 18

Step by step differentiation example problem 3:

Differentiate the given function v = 11x4 + 41x3. Find the third derivative value of the given function.

Solution:

Given function is v = 11x4 + 41x3

Step 1:

Differentiate the given function u with respect to x, we get

`((dv) / (dx))` = (11 * 4)x3 + (41 * 3)x2

= 44x3 + 123x2

Step 2:

Differentiate the above value ((dv) / (dx)) with respect to x, we get the second derivative value

`((d^2v) / (dx^2))` = (44 * 3)x2 + (123 * 2)x

= 132x2 + 246x

Step 3:

Differentiate the above value with respect to x, we get the third derivative value

`((d^3v) / (dx^3))` = (132 * 2)x + 246

= 264x + 246

The third derivative value of the given function is 264x + 246

Answer:

The final answer is 264x + 246

Practice problems for step by step differentiation

Step by step differentiation practice problem 1:

Find the first derivative of the given function f (x) = 10x2 - 782x

Answer:

The final answer is f' (x) = 20x - 782

Step by step differentiation practice problem 2:

Find the Second derivative of the given function f (x) = 1.7x3 + 82x2 + 37

Answer:

The final answer is f'' (x) = 10.2x + 164

Wednesday, March 13

Gaussian Integer


A Gaussian integer is a complex number  whose real and imaginary part are both integers . That is  aGaussian integer is a complex number of the form a +ib where a and b are  integers.The Gaussian integers, with ordinary addition  and multiplication  of complex numbers, form an  integral domain, usually written as Z[i].

Formally, Gaussian integers are the set

\mathbb{Z}[i]=\{a+bi \mid a,b\in \mathbb{Z} \}.

Thse absolute value of   Z= a+ib  is √a2 + b2    .The square of  the  absolute value  is  called  the numbers complex norm.

Norm (Z)=a2 + b2

For example, N(2+7i) = 22 +72 = 53.

The norm is multiplicative  i.e.

N(z\cdot w) = N(z)\cdot N(w).
The only Gaussian integers which are invertible in Z[i] are 1 and i.

The units  of   Z[i] are therefore precisely those elements with norm 1, i.e. the elements
1, −1, i and −i.
Divisibility in Z[i] is de ned in the natural way: we say β divides α if
α = βγ for some
γ ε Z[i]. In this case, we call a divisor or a factor of .

A Gaussian integer = a + bi is divisible by an ordinary integer c if and
only if c divides  a and c divides b in Z.
A Gaussian integer has even norm if and only if it is a multiple of 1 + i.

Historical background

The ring of Gaussian integers was introduced by  Carl Friedrich Gauss    in his second monograph on (1832).  The theorem of  quadratic reciprocity   (which he had first succeeded in proving in 1796) relates the solvability of the congruence x2 ≡ q (mod p) to that of x2 ≡ p (mod q). Similarly, cubic reciprocity relates the solvability of x3 ≡ q (mod p) to that of x3 ≡ p (mod q), and biquadratic (or quartic) reciprocity is a relation between x4 ≡ q (mod p) and x4 ≡ p (mod q). Gauss discovered that the law of biquadratic reciprocity and its supplements were more easily stated and proved as statements about "whole complex numbers" (i.e. the Gaussian integers) than they are as statements about ordinary whole numbers (i.e. the integers).