Wednesday, January 23

Radical Math Problems and Solutions


Radical problems and solutions are defined as one of the important topic in mathematics. Basically, there are three values are present in the radical number. Those values are named as called the index number, radical number, and the another one is known as the radicand number. For example, root(4)(12) is denoted as radical numbers. In this example of radical number, 4 is called as the index number, 12 is called as the radicand number. Mainly square root and the cubic roots are present in the radical statement.

Radical Expressions Calculator

The explanation for radical math problems and solutions are given below the following,

We can do many of the operation by using the radical. They are called as,

Addition problems and solutions by using the radical.
Subtraction problems and solutions by using the radical.
Multiplication  problems and solutions by using the radical.
Division problems and solutions by using the radical.

Example Problems and Solutions for Radical Math

Addition problems and solutions by using the radical.

Example 1: Add the following radical numbers, 12( sqrt(5) + sqrt(2) ) + 10( sqrt(2) + sqrt(5) )

Solution:

The given number is 12( sqrt(5) + sqrt(2) ) + 10( sqrt(2) + sqrt(5) )

= 12sqrt(5) + 12sqrt(2) + 10sqrt(2) + 10sqrt(5)

= 12sqrt(5)+ 10sqrt(5)  + 12sqrt(2)  + 10sqrt(2)

= 22sqrt(5) + 22sqrt(2)

This is the answer for radical numbers addition.

Subtraction problems and solutions by using the radical.

Example 2: Subtract the following radical numbers, 12( sqrt(5) + sqrt(2) ) - 10( sqrt(2) + sqrt(5) )

Solution:

The given number is 12( sqrt(5) + sqrt(2) ) - 10( sqrt(2) + sqrt(5) )

= 12sqrt(5) + 12sqrt(2) - 10sqrt(2) - 10sqrt(5)

= 12sqrt(5) - 10sqrt(5)  + 12sqrt(2)  - 10sqrt(2)

= 2sqrt(5)  + 2sqrt(2)

This is the answer for radical numbers subtraction.

Problem 3: Multiply the following radical numbers, 12( sqrt(5) + sqrt(2) ) and  10( sqrt(2) + sqrt(5) )

Solution:

12( sqrt(5) + sqrt(2) )   xx   10( sqrt(2) + sqrt(5) )

= 12sqrt(5) + 12sqrt(2) xx   10sqrt(2) + 10sqrt(5)

= 12 sqrt(10) xx  10 sqrt(10)

= 120 sqrt(100)

= 120  xx 10

= 1200

This is the answer for radical numbers multiplication.

Example 4: Divide the following radical numbers 1/(sqrt(7) - sqrt(8)) .

Solution:

1/(sqrt(7) - sqrt(8))

1/(sqrt(7) - sqrt(8))  xx  (sqrt(7) + sqrt(8))/(sqrt(7) + sqrt(8))

(sqrt(7) + sqrt(8))/(sqrt(7)^2 - sqrt(8)^2)

(sqrt(7) + sqrt(8))/(7 - 8)

(sqrt(7) + sqrt(8))/ - 1

= - (  sqrt(7) + sqrt(8) )

= - sqrt(7)  - sqrt(8)

This is the answer for radical numbers Division.
Practice Problems and Solutions for Radical Math

Example 1: Add the following radical numbers, 24( sqrt(3) + sqrt(12) ) + 12( sqrt(12) + sqrt(3) )

Answer: 36 sqrt(3)  +  36  sqrt(3)

Example 2: Subtract the following radical numbers, 24( sqrt(3) + sqrt(12) ) - 12( sqrt(12) + sqrt(3) )

Answer: 12 sqrt(3)  +   12 sqrt(3)

Monday, January 21

Percent Return Formula


In math, how much of parts done in every hundred is called as percents. The percents are represented by the symbol ‘%’. In other words, how much of value is noted out of hundred in experiments. The formula is returned with 100. Now we are going to see about percent return formula.


I like to share this Formula for Permutation with you all through my article.

Explanations for Percents Return Formula in Math

Percents return formula:

The percents are represented as fraction with percentage symbol that is 32/100%. We can denote the percents in whole number also like 32%.T he formula for returns the percents are P = ( observed value / total value) x 100.

How to return the percents using formula:

The formula for percents is divide the observed value and total value. Then multiply the 100 with that resultant value. Now, we can say this value is percents with symbol ‘%’. Sometimes, the formula returns the decimal value.

How to returns the fraction into decimal value:

We can represent the percent value in fraction and if there is any possible, we can simplify the fraction. Then divide the numerator value with denominator value.

More about Percents Returns Formula

Example problems for percents return formula in math:

Problem 1: Return the percent value using formula for given expression.

The student got the marks 140 out of 200. What is the percent value of student?

Answer:

The percent return formula is P = (observed value / total value) x 100.

The observed value is 140.

Return the percent as (140/200) x 100 = 0.7 x 100 = 70%.

Therefore, the formula returns the percent value as 70%.

Problem 2: Return the percent value using formula for given expression.

The fruit seller has 1650 apples out of 300 fruits. What is the percent value of apple?

Answer:

The percent return formula is P = (observed value / total value) x 100.

The observed value is 165.

Return the percent as (165/300) x 100 = 0.55 x 100 = 55%.

Therefore, the formula returns the percent value as 55%.

Exercise problems for percents return formula:

1. Return the percent value using formula for 65/130.

Answer: The percent value is 50.

2. Return the percent value using formula for 87/150.

Answer: The percent value is 58.