Friday, March 15

Math Word Problems Rate


Definition

Solving the Time, Speed, and Distance Triangle

The following formulas have been used if the speed is measured in knots, the distance in nautical miles, and the time in hours and/or tenths of hours (0.1 hour = 6 minutes).

Distance = Speed x Time

Speed = Distance ÷ Time

Time = Distance ÷ Speed

Math word problems rate - Examples

Math word problems rate - Example 1

A person crosses a 600 m long street in 5 minutes. What is his speed in km per hour?

Explanation:

Speed=`(600/(5*60))` = 2 m/sec.

Converting m/sec to km/hr (see important formulas section)

=`2*18/5`

=7.2 km/hr.

Math word problems rate - Example 2

The ratio between the speeds of two trains is 7: 8. If the second train is runs at 400 kms in 4 hours, then the speed of the first train is:

Explanation:

Let the speed of two trains be 7x and 8x km/hr.

Than, 8x=`400/4`

8x=100

X=12.5

Speed of first train = (7 x 12.5) km/hr = 87.5 km/hr.

Math word problems rate - Example 3

An aero plane covers with a certain distance at a speed of 240 kmph in 5 hours. To cover the same distance in 1 hours it must travel at a speed of:

Explanation:

Distance =` (240 x 5)` = 1200 km.

Required speed=`(1200*3/5)` km/hr

=720km/hr

Math word problems rate - Example 4

A man completes a journey in 10 hours. He travels the first half of the journey of the rate of 21 km/hr and second half at the rate of 24 km/hr. Find the total journey in km.

Explanation:

`(1/2)` `(x/21)` +`(1/2)` `(x/24)` =10

`(x/21)` +`(x/24)` =20

15x = 168 x 20

X(`168*` `20/15` `)` =224km

Math word problems rate - Example 5

A farmer travelled a distance of 61 km in 9 hours. He travelled partly on foot at 4 km/hr and partly of bicycle at 9 km/hr. The distance travelled on foot is:

Explanation:

Let the distance travelled on foot be x km.

Then, distance travelled on bicycle = (61 -x) km.

So, `x/4` + `(61-x)/9` =9

9x + `4(61 -x)` = 9 x 36

5x = 80

x = 16 km.

Math word problems rate - Practice Problem

Example

A man on tour of the travels at first 160 km in 64 km/hr and the next 160 km in 80 km/hr the average speed for the first 320 km of the tour is:

Answer=71.11 km/hr

Thursday, March 14

Step by Step Differentiation


In calculus (a branch of mathematics) the derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; the process of finding a derivative is called differentiation. The reverse process is called antidifferentiation (Source: Wikipedia)

General formula for differentiation:

`(d / dx)` (xn) = nx(n - 1)

`(d / dx)` (uv) = u `((dv) / (dx))` + v `((du) / (dx))`

Example problems for step by step differentiation

Step by step differentiation example problem 1:

Differentiate the given function u = 4x3 + 3x2 + 245x. Find the second derivative value of the given function.

Solution:

Given function is u = 4x3 + 3x2 + 245x

Step 1:

Differentiate the given function u with respect to x, we get

`((du) / (dx))` = (4 * 3)x2 + (3 * 2)x + 245

= 12x2 + 6x + 245

Step 2:

Differentiate the above value `((du) / (dx))` with respect to x, we get the second derivative value

`((d^2u) / (dx^2))` = (12 * 2)x + 6

= 24x + 6

The second derivative value of the given function is 24x+ 6

Answer:

The final answer is 24x + 6

Step by step differentiation example problem 2:

Differentiate the given function v = 9x2 + 12x. Find the second derivative value of the given function.

Solution:

Given function is v = 9x2 + 12x

Step 1:

Differentiate the given function u with respect to x, we get

`((dv) / (dx))` = (9 * 2)x + 12 + 0

= 18x + 12

Step 2:

Differentiate the above value `((dv) / (dx))` with respect to x, we get the second derivative value

`((d^2v) / (dx^2))` = 18 + 0

= 18

The second derivative value of the given function is 18

Answer:

The final answer is 18

Step by step differentiation example problem 3:

Differentiate the given function v = 11x4 + 41x3. Find the third derivative value of the given function.

Solution:

Given function is v = 11x4 + 41x3

Step 1:

Differentiate the given function u with respect to x, we get

`((dv) / (dx))` = (11 * 4)x3 + (41 * 3)x2

= 44x3 + 123x2

Step 2:

Differentiate the above value ((dv) / (dx)) with respect to x, we get the second derivative value

`((d^2v) / (dx^2))` = (44 * 3)x2 + (123 * 2)x

= 132x2 + 246x

Step 3:

Differentiate the above value with respect to x, we get the third derivative value

`((d^3v) / (dx^3))` = (132 * 2)x + 246

= 264x + 246

The third derivative value of the given function is 264x + 246

Answer:

The final answer is 264x + 246

Practice problems for step by step differentiation

Step by step differentiation practice problem 1:

Find the first derivative of the given function f (x) = 10x2 - 782x

Answer:

The final answer is f' (x) = 20x - 782

Step by step differentiation practice problem 2:

Find the Second derivative of the given function f (x) = 1.7x3 + 82x2 + 37

Answer:

The final answer is f'' (x) = 10.2x + 164

Wednesday, March 13

Gaussian Integer


A Gaussian integer is a complex number  whose real and imaginary part are both integers . That is  aGaussian integer is a complex number of the form a +ib where a and b are  integers.The Gaussian integers, with ordinary addition  and multiplication  of complex numbers, form an  integral domain, usually written as Z[i].

Formally, Gaussian integers are the set

\mathbb{Z}[i]=\{a+bi \mid a,b\in \mathbb{Z} \}.

Thse absolute value of   Z= a+ib  is √a2 + b2    .The square of  the  absolute value  is  called  the numbers complex norm.

Norm (Z)=a2 + b2

For example, N(2+7i) = 22 +72 = 53.

The norm is multiplicative  i.e.

N(z\cdot w) = N(z)\cdot N(w).
The only Gaussian integers which are invertible in Z[i] are 1 and i.

The units  of   Z[i] are therefore precisely those elements with norm 1, i.e. the elements
1, −1, i and −i.
Divisibility in Z[i] is de ned in the natural way: we say β divides α if
α = βγ for some
γ ε Z[i]. In this case, we call a divisor or a factor of .

A Gaussian integer = a + bi is divisible by an ordinary integer c if and
only if c divides  a and c divides b in Z.
A Gaussian integer has even norm if and only if it is a multiple of 1 + i.

Historical background

The ring of Gaussian integers was introduced by  Carl Friedrich Gauss    in his second monograph on (1832).  The theorem of  quadratic reciprocity   (which he had first succeeded in proving in 1796) relates the solvability of the congruence x2 ≡ q (mod p) to that of x2 ≡ p (mod q). Similarly, cubic reciprocity relates the solvability of x3 ≡ q (mod p) to that of x3 ≡ p (mod q), and biquadratic (or quartic) reciprocity is a relation between x4 ≡ q (mod p) and x4 ≡ p (mod q). Gauss discovered that the law of biquadratic reciprocity and its supplements were more easily stated and proved as statements about "whole complex numbers" (i.e. the Gaussian integers) than they are as statements about ordinary whole numbers (i.e. the integers).

Skew Normal Distribution


The skew normal probability distribution refers the normal probability distribution. It is also called as the Gaussian distribution. In normal distribution the mean is μ and the variance is `sigma^2` . Normal distribution is the close approximation of a binomial distribution. The limiting form of Poisson distribution is said to be normal distribution probability. This article has the information about the skew normal probability distribution.

Formula used for skew normal distribution:

The formula used for plot the standard normal distribution is

Z = `(X- mu) /sigma`

Where X is the normal with mean `mu` and the variance is `sigma^2` , `sigma` is the standard deviation.

Examples for the skew normal distribution:

Example 1 for the skew normal distribution:

If X is normally distributed the mean value is 1 and its standard deviation is 6. Determine the value of P (0 ≤ X ≤ 8).

Solution:

The given mean value is 1 and the standard deviation is 6.

Z = `(X- mu)/ sigma`

When X = 0, Z = `(0- 1)/ 6`

= -`1/6`

= -0.17

When X = 8, Z = `(8- 1)/ 6`

= `7/6`

= 1.17

Therefore,

P (0 ≤ X ≤ 4) = P (-0.17 < Z < 1.17)

P (0 ≤ X ≤ 4) = P (0 < Z < 0.17) + P (0 < Z < 1.17) (due to symmetry property)

P (0 ≤ X ≤ 4) = (0.5675- 0.5) + (0.8790 - 0.5)

P (0 ≤ X ≤ 4) = 0.0675 + 0.3790

P (0 ≤ X ≤ 4) = 0.4465

The value for P (0 ≤ X ≤ 4) is 0.4465.

Example 2 for the skew normal distribution:

If X is normally distributed the mean value is 2 and its standard deviation is 4. Determine the value of P (0 ≤ X ≤ 5).

Solution:

The given mean value is 2 and the standard deviation is 4.

Z = `(X- mu)/ sigma`

When X = 0, Z = `(0- 2)/ 4`

= -`2/4`

= -0.5

When X = 5, Z = `(5- 2)/ 4`

= 3/4

= 0.75

Therefore,

P (0 ≤ X ≤ 6) = P (-0. 5 < Z < 0.75)

P (0 ≤ X ≤ 6) = P (0 < Z < -0.5) + P (0 < Z < 0.75) (due to symmetry property)

P (0 ≤ X ≤ 6) = (0.6915 - 0.5) + (0.7734- 0.5)

P (0 ≤ X ≤ 6) = 0.1915+ 0.2734

P (0 ≤ X ≤ 6) = 0.4649

The value for P (0 ≤ X ≤ 6) is 0.4649.

Monday, March 11

Fundamental Theorem of Calculus Proof


The fundamental theorem of calculus determines the association the two basic operations of calculus called as the differentiation and integration. The first fundamental theorem of integration deals with the indefinite integration and the second theorem of integration deal with the definite integral of the function.

In this article we are going to see about the proof of the fundamental theorem for calculus.

Proof of fundamental theorem for calculus:

Proof of first fundamental theorem:

Let us take a real valued function f which is given by

x
F(x) = int f(t) dt, here f is also a real valued function
a

Then F is said to be continuous on [a,b] and can be differentiated on the open interval (a,b) which is given by

F′(x) = f(x), for all the values of x in the interval (a,b)

Let us consider two numbers x1 and x1+∆x , in the closed interval (a, b), then we have

x1                                                                        x1+∆x
F(x1) = int f(t) dt   -------> (1)     and       F(x1+∆x) = int f(t) dt ----------> (2)
a                                                            a

When we subtract the first equation and the second equation we get

x1+∆x                x1
F(x1+∆x) - F(x1) =  int   f(t) dt  -  int   f(t) dt ------------> (a)
a                    a

a              x1+∆x
=  int f(t) dt + int f(t) dt
x1                 a

a              x1+∆x           x1+∆x
int f(t) dt + int f(t) dt =  int f(t) dt
x1                 a                x1

When we substitute in equation (a) we get,

x1+∆x
F(x1+∆x) - F(x1) =  int   f(t) dt  -------------> (b)
x1

According to the theorem of integration

x1+∆x
int   f(t) dt  = f(c) ∆x  ,  given that there exists c in [x1 and x1+∆x]
x1

When we substitute this value in equation (b) we get,

F(x1+∆x) - F(x1) = f(c) ∆x

When we divide by ∆x on both sides we get,

F(x1+∆x) - F(x1) = f(c)
∆x

Take the limit ∆x  ->0, on both sides we get,

lim      F(x1+∆x) - F(x1) = lim  f(c)
∆x ->0            ∆x                        ∆x ->0

This left side of the equation is the derivative of F at x1

F′(x1)  = lim  f(c) -----> (3)
∆x ->0

We know that

lim    x1 = x1  and lim    x1+∆x  = x1
∆x ->0                 x1+∆x->0

Then according to the squeeze theorem, we get,

lim    c  = x1
∆x ->0

Substituting this in (c), we get

F′(x1) = lim  f(c)
c -> x1

The function f is continuous and real valued and thus we get,

F′(x1) = f(x1)

Hence the proof of the fundamental theorem for calculus.

Corollary of fundamental theorem proof:

The fundamental theorem is used to calculate the definite integral of a given function f if f is a real-valued continuous function on the interval [a, b], then

b
int f(x) dx = F(b) – F(a)

Learn Analytic Geometry Online


Another name of Analytical  geometry is co-ordinate geometry and it describes as a graph of quadratic equations in the co-ordinate plane. Analytical geometry grew out of need for establishing uniform techniques for solving geometrical problems, the aim being to apply them to study of curves, which are of particular importance in practical problems. In this article we shall discuss the learning analytic geometry ans some example problems

Example Problem 1 to learn analytic geometry online:

Find the equation of the parabola if the curve is open upward, vertex is (− 1, − 2) and the length of the latus rectum is 4.

Solution:

Since it is open upward, the equation is of the form

(x − h)2 = 4a(y − k)

Length of the latus rectum = 4a = 4 and this gives a = 1

The vertex V (h, k) is (− 1, − 2)

The equation of parabola is [x-(-1)]2=4*1 [y-(-2)]

[x+1]2=4[y+2]

Example Problem 2 - Learn analytic geometry online  :

Find the equation of the parabola if

(i) the vertex is (0, 0) and the focus is (− a, 0), a > 0

Solution: (i) From the given data of the parabola is open leftward

The equation of the parabola is of the form

(y − k)2 = − 4a(x − h)

Here, the vertex (h, k) is (0, 0) and VF = a

The required equation is

(y − 0)2 = − 4a (x − 0)

y2 = − 4ax.

Example Problem 3 - learn analytic geometry online :

Find the equation of the parabola if the curve is open rightward, vertex is (2, 1) and passing through point (6,5).

Solution: Since it is open rightward, the equation of the parabola is of the form

(y − k)2 = 4a(x − h)

The vertex V(h, k) is (2, 1)

∴ (y − 1)2 = 4a (x − 2)

But it passes through (6, 5)

(5-1)2 = 4a (6 − 2) -- > 16= 4a * 16

4a= 1 ---- > a = 1/4

The required equation is (y − 1)2 = 1/4 (x − 2)

Example Problem 4 - learn analytic geometry online :

Find the equation of the parabola if the curve is open leftward, vertex is (2, 0) and the distance between the latus rectum and directrix is 2.

Solution: Since it is open leftward, the equation is of the form

(y − k)2 = − 4a(x − h)

The vertex V(h, k) is (2, 0)

The distance between latus rectum and directrix = 2a = 2 giving a = 1 and the equation of the parabola is

(y − 0)2 = − 4(1) (x − 2)

or y2 = − 4(x − 2)

Practice problems- learn analytic geometry online:

1.Find the equation of the parabola whose vertex are (1, 2) and the equation of the directrix x = 3.

The required equation is

(y − 2)2 = 4(2) (x − 1)

(y − 2)2 = 8(x − 1)

2.The separate equations of the asymptotes of the hyperbola 4x2-25y2=100

Answer   :x/5-y/2=0 and x/5+y/2=0

Friday, March 8

Definition to Population Variance


Population variance is defined as the square of the mean deviation value by the total number of data. Population variance is calculated to find the variance in the probability of data.

Formula for finding the

sigma^2 =( sum_(k=1)^n(x_k - mu)^2) / N

Where as

sigma^2 - symbol for population variance

mu - It is the mean of the given data.

N  - Total number of values given in data set.

For finding the population variance we have to find the sample mean. For the take the average for the given values.

 mu = (sum_(K=1) ^n (x_k))/N

This mean value is used in the population variance to find its value.

Population Variance Values - Example Problems:

Population Variance Values - Problem 1:

calculate the population variance for the given data set. 2, 4, 3, 3, 5, 6, 5

Solution:

Mean:  Calculate the mean for the given data

 mu = (sum_(K=1) ^n (x_k))/N

using the above formula find the average for the given values.

 mu = (2+4+3+3+5+6+5)/7

mu = 28/ 7

 mu = 4

Population Variance: Calculate the population variance value from the mean.

sigma^2 =( sum_(k=1)^n(x_k - mu)^2) / N

substitute the mean values to find the deviation values from the given values.

 sigma^2 = ((2-4)^2+(4-4)^2+(3-4)^2+(3-4)^2+(5-4)^2+(6-4)^2+(5-4)^2)/7

sigma^2 = 12/7

sigma^2 = 1.7142857142857

Hence the population variance value is calculated using the mean value.

Algebra is widely used in day to day activities watch out for my forthcoming posts on Differentiation Math and What are Composite Numbers. I am sure they will be helpful.

Population Variance Values - Problem 2:

Find the value for the population variance of the given data set. 367, 378, 365, 366.

Solution:

Mean: Calculate the mean for the given data set using the formula,

 mu = (sum_(K=1) ^n (x_k))/N

Find the mean value that is average of the giave data set

mu = (367+378+365+366)/4

mu = 1476 / 4

mu = 369

Population variance: Calculate the population variance value from the mean.

sigma^2 =( sum_(k=1)^n(x_k - mu)^2) / N

substitute the mean values to find the deviation values from the given values.

sigma^2 =((367-369)^2 + (378-369)^2 + (365 - 369)^2+(366-369)^2) / 4

sigma^2 = 110/4

sigma^2 = 27.5

Hence the population variance value is calculated using the mean value.

Population Variance Values - Problem 3:

Find the value for the population variance of the given data set. 36, 37, 36, 39.

Solution:

Mean: Calculate the mean for the given data set using the formula,

 mu = (sum_(K=1) ^n (x_k))/N

Find the mean value that is average of the giave data set

mu = (36+37+36+39) / 4

mu = 148 / 4

mu = 37

My previous blog post was on Natural Numbers please express your views on the post by commenting.

Population variance: Calculate the population variance value from the mean.

sigma^2 =( sum_(k=1)^n(x_k - mu)^2) / N

substitute the mean values to find the deviation values from the given values.

"sigma^2 = ((36-37)^2 +(37-37)^2+(36-37)^2+(39-37)^2) / 4

sigma^2 = 6/4

sigma^2 = 1.5

Hence the population variance value is calculated using the mean value.

Population Variance Values - Practice Problems:

Find the value for the population variance of the given data set. 45, 47, 49, 43.

Answer: Population Variance = 5

Find the value for the population variance of the given data set. 87, 89, 78, 82, 89.

Answer: Population Variance = 18.8

Polynomial Matrices


A polynomial matrices or matrix polynomial is a  matrix whose elements are univariate or multivariate polynomials.A univariate polynomial matrix P of degree p is define like:sum_(n=0)^pA(n)x^(n)=A(0)+A(1)x+A(2)x^(2)+....+A(p)x^(p) where A(p) is non-zero and A(i) indicate a matrix of constant coefficients. Hence a polynomial matrix is the matrix-equivalent of a polynomial, by means of every one element of the matrix satisfying the classification of a polynomial of degree p.

Properties of polynomial matrices

A polynomial matrix in excess of a field with determinant equivalent to a non-zero constant is called unimodular, and have an inverse, which is also a polynomial matrix.
Note, that the simply scalar unimodular polynomials are polynomials of degree 0 - nonzero constants, for the reason that an inverse of an arbitrary polynomial of high degree is a rational function.
The roots of a polynomial matrix in excess of the complex numbers are the points in the complex plane wherever the matrix loses rank.

Characteristic polynomial of a product of two matrices

If A and B are two square n×n matrices then,attribute polynomials of AB and BA match:

PAB(t)=PBA(t).

If A is m×n-matrix and B is n×m matrices such that m
PAB(t)=tn-mPAB(t)

Polynomial in t and in the entry of A and B is a general polynomial identity. It consequently suffice to verify it on an open set ofparameter value in the complex numbers.

The tuples (A,B,t) wherever A is an invertible complex n by n matrix,

B is any complex n by n matrix,

and t is any complex number since an open set in complex space of dimension 2n2 + 1. When A is non-singular our result follow from the fact that AB and BA are similar:

BA=A-1(AB)A.

Example 1:

An example the 3x3 polynomial matrices

P=[[1,x^(2),x],[0,2x,2],[8x+2,x^2-1,0]]

=[[1,0,0],[0,0,2],[2,-1,0]]+[[0,0,1],[0,2,0],[3,0,0]]x+[[0,1,0],[0,0,0],[0,1,0]]xx^(2)

Example 2:

Find the eign value of given polynomial matrices

P=[[3,3],[0,6]]

The polynomial has the characteristic equation

0=det(P-λI)

=det[[3-lambda,3],[0,6-lambda]]

18-6lambda -3lambda + λ2

18-9lambda +18

λ2-3λ-6λ+18

λ(λ-3)-6(λ-3)

(λ-3)(λ-6)

λ=3,andλ=6

The eigenvalues of these matrices are 3,6

Example 3: Find the product of the given matrices M1=[[1,2],[3,4]] and M2=[[8,3],[2,7]]

The given polynomial is

M1=[[1,2],[3,4]]


M2=[[8,3],[2,7]]

The product of the given matrices M1 and M2  =M1xM2

M1xM2    =[[1,2],[3,4]]xx [[8,3],[2,7]]

The product of the given  matrices is=[[12,17],[32,37]]

Thursday, March 7

Least Common Denominator


If the denominators are unlike, then we can find LCD (Least common Denominator) of the given denominators.

Least Common Denominator is the smallest positive(least) integer which is common in multiples of the denominators.

For example, given fractions are 1/3 and 1/6. Find LCD.

List the multiples of 3:   3, 6, 9, 12, 15, 18, 21,...

Multiples of 6:   6, 12, 18, 24,...

Here, 6 is the lowest common term for both the multiples of 3 and multiples of 6.

The answer is 6, and that is the Least Common Denominator.

There are five examples for least common denominator. From these examples for least common denominator, we can get clear view about least common denominator. Let us see the examples for least common denominator in the following section.

Examples on examples for least common denominator:

We are going to explain examples for least common denominator.

Example 1:

Find the least common denominator of the fractions; 1/5,1/3

Solution:

Here, the denominators are 5 and 3.

The common denominator of 5 and 3 is 15.

Multiples of 5: 5,10,15,20,…..

Multiples of 3: 3,6,9,12,15,18,….

Here, 15 is the lowest common term for both the multiples of 5 and multiples of 3.

The answer is 15, and that is the Least Common Denominator.

Example 2:

If the given fractions are 3/4,1/3, find the least common denominator.

Solution:

Here, the denominators are 4 and 3.

The common denominator of 4 and 3 is 12.

Multiples of 4: 4,8,12,16,20….

Multiples of 3: 3,6,9,12,15….

Here, 12 is the lowest common term for both the multiples of 4 and multiples of 3.

So, the Least Common Denominator is 12.

Example 3:

Find the least common denominator of ; 5/6, 2/15

Solution:

Here, the denominators are 6 and 15.

The common denominator of 6 and 15 is 30.

Multiples of 6:  6,12,18,24,30…

Multiples of 15: 15,30,45,60….

Here, 30 is the lowest common term for both the multiples of 6 and multiples of 15.

So, the Least common denominator is 30.

Example 4 on examples for least common denominator:

What is the least common denominator of the fractions;  5/12, 11/18

Solution:

Here, the denominators are 12 and 18.

The common denominator of 12 and 18 is 36.

Multiples of 12:  12,24,36,48,….

Multiples of 18: 18,36,54,….

Here, 36 is the lowest common term for both the multiples of 12 and multiples of 18.

So, the Least common denominator is 36.

Example 5:

1/5 + 1/6 + 1/15  What is the LCD?

Solution:

First we list the multiples of each denominator.

Multiples of 5 are 10, 15, 20, 25, 30, 35, 40,...

Multiples of 6 are 12, 18, 24, 30, 36, 42, 48,...

Multiples of 15 are 30, 45, 60, 75, 90,....

Here, 30 is the lowest common term for both the multiples of 5 and multiples of 6 and multiples of 15 .

So, the Least common denominator is 30.

Therefore, Examples for least common denominator are explained.

Wednesday, March 6

Learning Parallel Lines


Learning parallel lines is very easy. As the name it self indicates that there will be some lines that are parallel to each other. Think logically if two lines are parallel will they ever meet at some point. The answer is no. Because the two parallel lines maintain equal distance between them so there is no chance that they meet at some point. So we can conclude that two lines are parallel if and only if they are coplanar and never meet each other that is they maintain same distance apart.

Transversals are very important while learning parallel lines.

Tranversal can be defined as a line that intersects two or more  lines, at different points. Simply a line that crosses two or more lines  is called transversal. With the help of transversals we can say whether the two given lines are parallel or not. Figure below shows how a transversal looks.



How can we know the lines are parallel or not?

Answer is with the help of some angles that are formed when transversal passes through pair of coplanar lines. These angles are very important while learning parallel lines.The angles are

Corresponding Angles
Alternate Interior Angles
Alternate Exterior Angles
Co-Interior Angles


Corresponding angles:

In our figure the corresponding angles are " a,e " , " d, h" , "b , f" , "c,g".

Alternate Interior angles:

The name it self indicates that alternate means on the other side and interior means inner angles. The Alternate Interior angles are "d,f" and "c,e".

Alternate exterior angles:


The name it self indicates that alternate means on the other side and exterior means outer angles. Alternate exterior angles in the given figure are "a,g" and "b,h".

Co-interior angles:

In the given figure Co-interior interior angles are "d,e" and "c,f".

Now for two lines to be parallel corresponding angles, alternate Interior angles, alternate exterior angles must be equal and sum of Co-interior  angles must be equal to 180. Even if one condition is satisfied it is enough as automatically all the other will satisfy.

This is all about learning parallel lines. Hope you enjoyed it......

Definition of Probability Distribution


Probability distribution function referred as p(x) which is a function that satisfies below properties:

Probability that x can obtain particular value is p(x).

p[X,x]=p(x)=px

p(x) positive for all real x.
Sum of p(x) over all feasible values of x is 1, that is

`sum_(pj)pj=1`

Where, j- all possible values that x can have and pj is probability at xj.

One significance of properties 2,3 is that 0 <= p(x) <= 1.

Steps used for how to determine probability distribution:

Using following steps used to how determine probability distribution:

Step 1 for how to determine probability distribution:

Plot the data for a image illustration of the data type.

Step 2 for how to determine probability distribution:

First steps is to determining what data distribution one has - and thus the equation type to use to model the data - is to rule out what it cannot be.

The data sets cannot be a discrete uniform distribution if there are any crest in the data set.
The data is not Poisson or binomial if the data has more than one crest.
If it contains a single arc, no secondary crests, and contains a slow slope on each side, it may be Poisson or a gamma distribution. But it is not discrete uniform distribution.
If the data is regularly distributed, and it is without a slant in the direction of one side, it is secure to rule out a gamma or Weibull distribution.
If the function has an even distribution or a crest in the center of the graphed outcomes, it is not a geometric distribution or an exponential distribution.
If the incidence of a factor differ with an environmental variable, it probably is not a Poisson distribution.


Step 3 for how to determine probability distribution:

After probability distribution type has been tapering downward, do an R squared examination of each probable type of probability distribution. The one with the maximum R squared value is most possible correct.

Step 4 for how to determine probability distribution:

Remove one outlier data point. Now recalculate R squared. If the same probability distribution form comes up as the neighboring match, then there is high confidence that this is the correct probability distribution to use for group of data.

From above steps we can understand how to use probability distribution.

Monday, March 4

Polynomial Exponent


Polynomial of a single term is called as Monomial. If the Polynomial has the two terms Sum or Difference then it is called a Bi-nomial, the Sums or Differences of a three-term Polynomial is called a Trinomial. The Sums and/or Differences of polynomial of four or more terms are simply called polynomial.

Two or more terms of a Polynomial exponent that has the equivalent variable and precisely the same whole number polynomial exponent are called Like Terms. For suitable example the terms; 6X3 and -7X3, are Like Terms, since the variable X is the similar variable in both terms, and the Whole number exponent, 3, is absolutely the similar polynomial exponent in both terms. The terms;4X3 and 4X4 are not Like Terms although the variable X is the same in both terms but the Whole number polynomial exponent are completely different from other.

Operation of polynomial exponent:

Addition of polynomial exponent:

Two or more polynomials, adding the terms,

Suitable example adding polynomial exponent,

Example1:

(2x2+3x3)+(x2+7x3)

=2x2+x2+3x3+7x3

The variable and exponent must be same then we add the polynomial exponent,

=3x2+10x3

So the result is  =3x2+10x3

Subtraction of polynomial exponent

Example2:

(3x2+3x3)-(x2+7x3)

=3x2-x2+3x3-7x3

The variable and exponent must be same then we subtract the polynomial exponent,

=2x2-4x3

So the result is =2x2-4x3

Multiplication of polynomial exponent:

Two or more polynomial, so multiply their exponent terms. For reasonable example to multiply the following two Terms, 2X2 and 7X2, Then the following terms then first multiply the coefficients (2) (7) and we multiply (X2) (X2) which can be expressed as the following term 14X4, that is, when we multiply variables that are the same.


Different variables in polynomial exponent:

The variables are different and the exponent also different, so we can write the variables and exponents adjoining to each other.

For Example, (7X2)(3Y2)is equal to 21X2Y2.

So the result is 21X2Y2

Similar to all the different variable, polynomial exponent.

To multiply the two polynomial exponent, for example (X-2Y)(X-2Y), then the result is x2-2xy+4y2 . Here we take the first term X of the first Binomial and multiply each term in the second Binomial, then we take the second term in the first Binomial and multiply each term in the second Binomial, and then we add all the terms. Similar to all the polynomial categories, for example trinomial, binomial exponents.

Friday, March 1

Inverse Trigonometry Definition


The three trigonometry functions are arcsin(x), arccos(x), arctan(x). The inverse trigonometry function is the inverse functions of the trigonometry, written as cos^-1 x , cot^-1 x , csc^-1 x , sec^-1 x , sin^-1 x , and tan^-1 x .

Sine:

H (x) = sin(x)   where   x is in [-pi/2 , pi/2]

Cosine:

G (x) = cos(x) where   x is in [0 , pi ]

Tangent:

F (x) = tan(x)   where   x is in (-pi/2 , pi/2 )

Understanding Inverse Trig Function is always challenging for me but thanks to all math help websites to help me out.

Cosecant Definition

Csc theta = (hypotenuse)/(opposite)

Secant Definition

Sec theta = (hypotenuse)/(adjacent)

Cotangent Definition

Cot theta = (adjacent)/(opposite)

Examples of Inverse trigonometry functions:

Example 1:

Find the angle of x in the below diagram. Give the answer in four decimal points.

Solution:

sin x =2.3/8.15

x = sin -1(2.3/8.15 )

= 16.3921˚

Example 2:

Solve sin(cos-1 x )

Solution:
Let z = sin ( cos-1 x ) and y = cos-1 x so that z = sin  y. y = cos-1 x may also be marked as


cos y = x with pi / 2 <= y <=- pi / 2

Also

sin2y + cos2y = 1

Substitute cos y by x and solve for cos y to obtain

sin y = + or - sqrt (1 - x^2)

But pi / 2  <= y <= - pi / 2 so that cos y is positive

z = sin y = sin(cos-1 x) = sqrt (1 - x^2)

Example 3:

Evaluate the following sin-1( cos ((7 pi) / 4 ))

Solution:
sin-1( cos ( y ) ) = y only for  pi / 2 <=  y <= -pi / 2 . So we initial transform the given expression noting that cos ((7pi) / 4 ) = cos (-pi / 4 ) as follows

sin-1( cos ((7 pi) / 4 )) = sin-1( cos ( pi / 4 ))  - pi / 4  was selected since it satisfies the condition  pi / 2 <=  y <= - pi / 2 . Hence

sin-1( cos ((7 pi) / 4 )) =pi/4

Example 4:

With the given value find inverse of tan.

Solution:

Since tangent, again, is the trig function associated with opposite and adjacent sides, we apply the inverse of tangent to calculate the measure of this angle.

Tan 16 = (opposite)/(adjacent)

Tan 16 = ((bar(AC))/(bar(CB)))

Tan-1(7/24 ) = 16 o

Associative Property Sum


In mathematics, if x, y, z be any three variables involving the addition operation and then satisfy the following condition,

x + (y + z) = (x + y) + z

This kind of property is called associative property sum or addition. In associative property sum, the sum of algebraic expression provides the same result in changing the order of brackets in this expression. Such as

x + y + z = (x + y) + z = x + (y + z)



Examples for associative property sum:

Example 1 on associative property sum:

Prove the associative property sum of the given expression.

(a) 4 + 6 + 7

Solution:

(a) Let x, y, and z be 4, 6 and 7 respectively.

Therefore, the given expression satisfy the following condition,

x + y + z = x + (y + z) = (x + y) + z

Here,

Prove the following expression

4 + (6 + 7) = (4 + 6) + 7

L.H.S = 4 + (6 + 7)        (first perform the addition operation within the bracket from left to right,

because brackets are higher priority of the order of operations)

= 4 + (13)      (second perform the addition operation outside of the expression from left to right)

= 17                    ------ (1)

R.H.S = (4 + 6) + 7

= (10) + 7

= 17             --------- (2)

From equation (1) and (2) we get,

L.H.S = R.H.S

i.e., 4 + (6 + 7) = (4 + 6) + 7

Hence, the given expressions satisfy the associative property with sum of numbers.

Example 2 on associative property sum:

(a) 23 + 67 + 34, prove the associative property of sum or addition.

Solution:

(a) Let m, n, and l be 23, 67 and 34 respectively.

Therefore, the given expression satisfy the following condition,

m + n + l = m + (n + l) = (m + n) + l

Here,

Prove the following expression

23 + 67 + 34 = 23 + (67 + 34) = (23 + 67) + 34

23 + 67 + 34 = 124       ---------------- (1)

We consider the remaining expression, such as

23 + (67 + 34) = (23 + 67) + 34

L.H.S = 23 + (67 + 34)

= 23 + (101)

= 124                    ------ (2)

R.H.S = (23 + 67) + 34

= (90) + 34

= 124                  --------- (2)

from equation (1) , (2) and (3) we get,

L.H.S = R.H.S = 124

i.e.,  4 + (6 + 7) = (4 + 6) + 7 = 4 + 6 + 7

Hence, the given expression of sum is satisfied the associative property.